
WebViewer Developer Guide
version 1.4.0

© 2002-2013 PDFTron Systems, Inc.
1 of 30

Table of Contents
Introduction..4

Audience and Scope..4
WebViewer Components...4

Client-side Viewer Application...4
Platforms Supported...5

Document Conversion Component...5
PDFNet Cloud API..5
PDFNet SDK with WebViewer Add-on...5
DocPub Command-line Converter...6

Your Server Component..6
WebViewer and XOD Hosting...6
Annotation Handling..7

WebViewer:The Basics..8
Using JavaScript with WebViewer..8
XOD Conversion...10

Customization Framework...14
Configuration Options...14
External Configuration File...14
Customization with PDFNet Cloud API...14

Annotations and Forms..15
Markup Annotations ...15

Permission Checking..15
Read-only Mode...16
Toggle Annotations...16
Filter Annotations...16

Forms...17
Supported Field Widget Types..17

Button Fields..17
Text Fields..18
Choice Fields...18

Supported Form Actions...18
Submit Form Actions...18
Reset Form Actions..18
JavaScript Actions..19

© 2002-2013 PDFTron Systems, Inc.
2 of 30

Hide Actions...19
Processing Annotations and Forms...20

Loading Annotations and Form Fields...20
Exporting Annotations and Form Fields...20
Merging XFDF Annotations...21

PDFNet SDK...22
Samples/Tutorials..22

Advanced Features...26
Document Encryption/Decryption..26

Encryption on XOD Conversion..26
Decryption on Client...27

Offline Mode...28
Getting Started..28
Downloading a Document..28
Enabling Offline Viewing...28

Appendix..29
HTML5 ReaderControl Query Parameters...29

© 2002-2013 PDFTron Systems, Inc.
3 of 30

Introduction

Audience and Scope
This document is intended for developers wishing to integrate PDFTron WebViewer with their Web
application. It covers the basic usage of the WebViewer.js wrapper, as well as discusses advanced
customizations to the HTML5 and Mobile viewers. Customizations on the Silverlight and Flash
viewers are not discussed here.

WebViewer Components
PDFTron WebViewer is a cross-platform solution that offers a seamless and effective way to embed
viewing of PDF and other document formats directly within your Web application. There are three
major components to this solution:
1. The client-side viewer application
2. The document conversion component
3. Your own server for document hosting and annotation handling (optional)

Client-side Viewer Application

The PDFTron WebViewer is a solution that employs several different client-side application
technologies to deliver consistent and reliable document viewing across all major platforms and
environments. Under the hood, the PDFTron WebViewer consists of several client-side applications
implemented with different browser technologies (HTML5, mobile, Silverlight and Flash). For pure
document viewing, the WebViewer does not require any server-side scripting. The document files can
be served directly from any static Web server.

Table 1. Feature Support by WebViewer Technology
HTML5 Mobile Silverlight Flash

Document Viewing ✓ ✓ ✓ ✓
Annotations ✓ ✓
Forms ✓ ✓
Customization Framework ✓ ✓

© 2002-2013 PDFTron Systems, Inc.
4 of 30

Platforms Supported

● HTML5 (any modern browser with Canvas support; e.g. IE9, Chrome, FireFox, Safari, Opera).
● Silverlight 4 & 5 (Windows, Mac, Windows Phone 7 – Mango)
● Flash (Windows, Linux, Mac, Mobile).
● Web browsers on iOS (iPad/iPhone), Android and other mobile platforms.
● Native mobile SDKs on Android and iOS.
● .NET/WPF, C/C++, JAVA apps on Windows, Linux, and Mac OS X.

Document Conversion Component

The WebViewer solution supports viewing a wide range of document file formats by converting all
documents to the XOD format.

PDFTron provides the XOD conversion component in three forms. You can choose the one that suits
your deployment, requirements and licensing needs.

PDFNet Cloud API

This is a RESTful web service that allows quick and simple XOD conversions through a REST API.
You get the added benefit of having the XOD documents hosted for you on the Cloud API server, along
with a hosted version of WebViewer. This is the easiest and most cost-efficient way of converting
documents.

For more information, see http://www.pdftron.com/pdfnet/cloud.

PDFNet SDK with WebViewer Add-on

With this option, you get the benefit of using PDFNet SDK, our full-featured PDF SDK, on your
server. Essentially you would be doing your own XOD conversions on your server with PDFNet. You
can do more advanced features here: e.g. apply your own watermark to all converted documents,
add/remove pages to converted documents, merge annotations back to the original PDF. This gives you
the most flexibility and control over your documents.

For more information, see http://www.pdftron.com/pdfnet

© 2002-2013 PDFTron Systems, Inc.
5 of 30

http://www.pdftron.com/pdfnet
http://www.pdftron.com/pdfnet/cloud

DocPub Command-line Converter

With this option, you run the conversions with a command-line tool. This works best if you have a
static set of documents you want to convert in a batch, and upload to a server all at once.

Table 2. XOD Conversion Features by Converter Types
PDFNet SDK DocPub CLI PDFNet

Cloud API
XOD Conversion ✓ ✓ ✓
XOD Encryption ✓ ✓ ✓
MS Office Documents Support (Windows only)✓ (Windows only)✓ ✓
Hosted Viewer ✓
Hosted XOD ✓
Document Pre-Processing (PDF) ✓
Built-in Annotation (XFDF)
merging

✓

On-the-fly Conversion Streaming ✓

Your Server Component
In order to view your documents on the web, both the viewer application (WebViewer) and your
converted XOD documents need to be hosted on a web server. Moreover, if you need access control
over your documents or manage user-created annotations, you will need your own server to handle this
logic.

WebViewer and XOD Hosting

With PDFNet or DocPub, you will be hosting your own version of WebViewer and XOD documents on
your own web server. If you choose PDFNet Cloud API as your document conversion component, you
do not have to host your own viewer application or XOD documents as they are all hosted by Cloud
API. (You could also download converted XOD documents from Cloud API and host it yourself)

There are a couple of things to keep in mind when hosting your own WebViewer and XOD documents.
For the best performance, ensure that your web server supports the Range request header. WebViewer
makes byte range requests to download only parts of the XOD file at a time; this allows the WebViewer
to start rendering documents without having to download the entire file first. Also, make note that
ideally the WebViewer application and the XOD files should be hosted in the same domain host to
avoid the same origin policy restrictions of the browser.

© 2002-2013 PDFTron Systems, Inc.
6 of 30

Annotation Handling

A big area of interest for the WebViewer is support for annotations. WebViewer provides a fully-
functional annotation framework in HTML5 that is compatible with PDF XFDF annotations.

While the WebViewer is provided as a pure client application, it also has built-in support for
communicating with a back-end server. If an annotation server path is specified in the WebViewer, it
will issue AJAX requests to fetch and save the annotations.

Since the server-side handling of annotations is heavily linked with the application logic, it is up to the
developers to implement. WebViewer provides a sample implementation of a PHP annotation handler.
Please refer to the section on Annotations in this document for more details.

© 2002-2013 PDFTron Systems, Inc.
7 of 30

WebViewer:The Basics
For developers wishing to take advantage of the universal document viewing technology to support as
many clients as possible, using the WebViewer.js wrapper is the way to go. WebViewer.js makes it easy
to embed a viewer control in an HTML with JavaScript. WebViewer.js detects browser and platform
support to load the best viewer technology.

Developers who do not need cross-platform support may choose to use the WebViewer viewer
technologies independently. For example, developers who only need to support modern browsers and
mobile devices can use the HTML5 viewer directly. In this case, please see the API reference that is
included with the viewer directly.

Using JavaScript with WebViewer

To create your own WebViewer web page from scratch follow these steps.

1. Create an HTML page.

2. Add the necessary scripts to the <head> tag of the HTML page.
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
<script type="text/javascript" src="WebViewer.min.js"></script>

Alternatively you can include the following un-minified version of WebViewer.js
<script type="text/javascript" src="silverlight/Silverlight.js"></script>
<script type="text/javascript" src="flash/swfobject.js"></script>
<script type="text/javascript" src="flash/FABridge.js"></script>
<script type="text/javascript" src="WebViewer.js"></script>

WebViewer.js depends on jQuery, and helper scripts for Silverlight and Flash. The Silverlight and Flash
scripts are optional if you do not plan on using those technologies. This will allow you to use the
WebViewer class in your JavaScript code.

3. Create a <div> tag in the HTML <body> and give it an id. This will be the container for the
web viewer.

<div id="viewer"></div>

© 2002-2013 PDFTron Systems, Inc.
8 of 30

4. Add the following script to create a new instance of the WebViewer.
<script type="text/javascript">

$(function() {
var viewerElement = document.getElementById('viewer');

 var myWebViewer = new PDFTron.WebViewer({
 type: "html5,Silverlight,flash",
 initialDoc: "GettingStarted.xod"
 }, viewerElement);

}
</script>

The script above will create and render a PDFNet WebViewer control on the HTML page as a child of
the provided <div> element. The code specifies that the HTML5 viewer be attempted first. If the script
detects that canvas is not supported by the client’s web browser, the Silverlight plug-in will be loaded
next. If Silverlight is not present, the script will finally try using Flash. Regardless of the viewer
technology, the viewer created will load the document as specified by initialDoc immediately.

As a start, you can load the sample file “GettingStarted.xod” included in the download package.

5. It is now possible to use the “myWebViewer” variable to invoke ReaderControl’s methods. For
example, the following code demonstrates how to load a document:

myWebViewer.loadDocument("GettingStarted.xod");

Additionally, you can use jQuery event bindings to react to changed events.
For example, the following code shows how to be notified when the page changes.

$(viewerElement).bind('pageChanged', function(event){
alert("Current page is: " + myWebViewer.getCurrentPageNumber();

});

With the WebViewer methods and event binding, you have the power to create your own GUI interface
that is shared across all viewer technologies*.
Please refer to the API documentation for other methods and events which can be used. The API
reference can be found under doc/ or online at http://www.pdftron.com/pdfnet/webviewer/jsdoc/

*Please note that the HTML5 Mobile viewer is optimized for mobile devices and therefore cannot be
controlled through WebViewer.js. If the WebViewer.js detects that the user agent is a mobile device, it
will automatically switch to the Mobile viewer.

6. Save the HTML page under your web server. Make sure that the page is running on your web
server (through HTTP or HTTPS).

© 2002-2013 PDFTron Systems, Inc.
9 of 30

XOD Conversion
Once you have successfully created your own WebViewer instance, you will want to view your own
documents. To do so, you will need to convert your documents to the XOD format. Please choose one
of the three XOD converters available: http://www.pdftron.com/pdfnet/webviewer/download.html

PDFNet Cloud API

With Cloud API, you can create XOD documents by making HTTP POST requests to the server. For
sample code snippets on how to do this, please see the following link:
http://www.pdftron.com/pdfnet/cloud/snippets.html

PDFNet SDK with WebViewer Add-on

With the full-featured PDF SDK, users can convert their PDF documents to XOD documents using the
pdftron.PDF.Convert class. Specifically, the method Convert.ToXod() converts the input file to XOD
format and saves to the specified path. Here is the overload list for the method:

 Name Description
ToXod(String) Convert the input file to XOD

format and save to the
specified path.

ToXod(PDFDoc) Convert the PDFDoc to XOD
format and save to the
specified path.

ToXod(String,
Convert.XODOutputOptions)

Convert the input file to XOD
format and save to the
specified path.

ToXod(String, String) Convert the input file to XOD
format and save to the
specified path.

ToXod(PDFDoc,
Convert.XODOutputOptions)

Convert the PDFDoc to XOD
format and save to the
specified path.

ToXod(PDFDoc, String) Convert the PDFDoc to XOD
format and save to the
specified path.

ToXod(String, String,
Convert.XODOutputOptions)

Convert the input file to XOD
format and save to the
specified path.

© 2002-2013 PDFTron Systems, Inc.
10 of 30

http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/f9f1f659-2ac3-4d56-add3-eb3eaf5fc484.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/f9f1f659-2ac3-4d56-add3-eb3eaf5fc484.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/5476201a-46b3-f818-0d59-3cba70c73bae.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/c66a203b-b7cd-5ea0-bae6-c466d28ba705.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/c66a203b-b7cd-5ea0-bae6-c466d28ba705.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/c5b31b62-89e8-b1a9-b3d9-532ba0d99be6.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/429d6c66-a35b-253f-f573-1bf2c4386427.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/429d6c66-a35b-253f-f573-1bf2c4386427.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/e5327e94-a904-e205-a0d4-51103d93392f.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/1aa81761-2447-341b-56a3-c2150aa1d273.htm
http://www.pdftron.com/pdfnet/cloud/snippets.html

ToXod(PDFDoc, String,
Convert.XODOutputOptions)

Convert the PDFDoc to XOD
format and save to the
specified path.

To specify the convert options for the conversion, the user should use the Convert.XODOutputOptions
class and pass it as a parameter in the ToXod() method. Here are all the options that can be set in
XODOutputOptions:
 Name Description

SetElementLimit If rendering is permitted, sets
the maximum number of page
elements before that page will
be rendered. the default value
is 10000 elements

SetFlattenContent Flatten images and paths into a
single background image
overlaid with vector text. This
option can be used to improve
speed on devices with little
processing power such as
iPads.

SetMaximumImagePixels Specifies the maximum image
size in pixels.

SetOpacityMaskWorkaround If rendering is permitted, sets
whether pages containing
opacity masks should be
rendered. This option is used as
a workaround to a bug in
Silverlight where opacity masks
are transformed incorrectly. the
default setting is not to render
pages with opacity masks

SetOutputThumbnails Sets whether per page
thumbnails should be included
in the file the default setting is
to output thumbnails

SetPreferJPG Where possible output JPG files
rather than PNG. This will apply
to both thumbnails and
document images.

SetSilverlightTextWorkaround Outputs rotated text as paths.
This option is used as a
workaround to a bug in
Silverlight where pages with
rotated text could cause the
plugin to crash.

© 2002-2013 PDFTron Systems, Inc.
11 of 30

http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/f6c66566-c60e-441f-5d6b-2c7a53820d62.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/195feba1-db68-67b1-457b-5054c9aee1a9.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/7f7219e2-6412-5f18-42ba-f59a538dbfd8.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/4546bb0c-cead-baa8-2ec6-921b6301cddd.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/7e5b2b3d-7b2b-a772-28a3-56e014f1425b.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/b9029aad-3434-1c78-a553-2bb396a20c47.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/e229e229-38c1-4e2a-3ba9-42b27d6ef6ef.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/b95d2668-ac7d-e1aa-c8e2-f007605514b3.htm
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/b95d2668-ac7d-e1aa-c8e2-f007605514b3.htm

SetThumbnailSize The width and height of a
square in which all thumbnails
will be contained.

For more information, see http://www.pdftron.com/pdfnet. For sample code to convert PDF documents
to XOD documents, see http://www.pdftron.com/pdfnet/samplecode.html.

DocPub command-line converter

DocPub is a command-line tool that allows conversion from PDF to XOD.

The command is docpub [<options>] file. Here is a list of common options used:

 --file... arg A list of folders and/or file names to process.

 -s [--subfolders] Process all subfolders.

 -f [--format] arg The output format. The following is a list of
 supported export formats:
 pdf
 xps (Print XPS)
 xod (Web optimized XPS)

 -o [--outdir] arg The output directory. The folder can be relative
 to the current working folder. If the folder
 does not exist DocPub will attempt to create the
 required path. If this parameter is not specified
 all files will be saved relative to the
 current working folder.

 --fname arg The explicit name for the converted file. The
 parameter is used only when converting one file
 at a time. The output file will be stored in the
 'outdir' folder.

 --extension arg The file extension which filters the files to be
 processed by the specified type.

© 2002-2013 PDFTron Systems, Inc.
12 of 30

http://www.pdftron.com/pdfnet/samplecode.html
http://www.pdftron.com/pdfnet
http://www.pdftron.com/pdfnet/PDFNetAPIRef/html/2b135927-b78c-b6e1-7df0-b441c5b52f13.htm

 -p [--pass] arg The password to process the input file. The
 password is required only when the input
 document is encrypted.

 -d [--dpi] arg (=92) For conversions to .xod only. The output
 resolution, from 1 to 1000, in Dots Per Inch
 (DPI) at which to render elements which cannot
 be directly converted. The higher the DPI, the
 larger the image. The default resolution is 92
 DPI.

For example, here is the command used to batch convert a directory of PDF files to Web optimized
XPS (XOD):
 docpub -f xod --subfolders --extension pdf mypdfdir

For more information, please see the usage documentation included in the DocPub CLI package.

© 2002-2013 PDFTron Systems, Inc.
13 of 30

Customization Framework
The HTML5 WebViewer was designed for easy customization of the user interface and custom
features. The ReaderControl control offers a configuration file. While it is possible to customize the
Silverlight and Flash viewers as well, it is not compatible with the customization framework and will
not be discussed in this document.

Configuration Options
For common user interface customizations, WebViewer makes this easy by loading configuration
options before initializing ReaderControl. Some configurable options include hiding the toolbar, hiding
the side panel, providing a server URL for annotation saving, and alert message string.
To find out more about the options available, please see the “ReaderControl.config” in the WebViewer
HTML5 API Reference.
By default, the viewer will read the options in ReaderControlConfig.js. You can either change this
directly, or load an external configuration file.

External Configuration File

To make customizations simple and clean, you can define all your customizations in an external
JavaScript configuration file. When the query parameter “config” is provided, the viewer will
download this script dynamically.

This is the preferred way to make customizations. In fact, all the WebViewer HTML5 samples use this
method of customization. The samples show a wide range of customizations, from
changing the theme to adding custom buttons and other functionality.

Customization with PDFNet Cloud API
If you choose to use PDFNet Cloud API for your XOD conversions, your documents with be loaded
with a hosted WebViewer instance. While you cannot modify this WebViewer instance directly, you can
use the external configuration file setting to make your customizations. To do so, log in to the Cloud
API management console and set a URL path for your viewer configuration.

© 2002-2013 PDFTron Systems, Inc.
14 of 30

Annotations and Forms
PDFTron WebViewer offers a powerful annotations framework that enables your application to have
interactive documents. The WebViewer annotation framework includes features for both markup
annotations and form widgets. Please note that this feature is only available for the HTML5 and mobile
viewers.

Markup Annotations

With the PDFTron WebViewer, users can annotate their documents freely. The annotations can be
saved to an XFDF (XML Forms Data Format) file from the WebViewer, and be loaded back into the
document next time it is opened. The WebViewer runs in a client-server architecture. Some common
use cases include:

● creating and saving annotations for a document
● loading annotation files (XFDF files) into a document
● collaboration: multiple users can view the same document, adding their own annotations, while

seeing the annotations that others have added
● merging annotations from an XFDF file into a document
● merging annotations from different XFDF files into one single XFDF annotations file

Permission Checking

When the WebViewer first loads up a document, some user information is passed to it through the
URL. This includes the “user” and “admin” attributes. “user” specifies the user name of the current
user viewing the document, while “admin” specifies whether the user has administrative privileges.

The WebViewer has two levels of user permissions: admin and normal. Users with admin level rights
can do anything with annotations with no restrictions. Normal users on the other hand, are restricted to
editing the annotations that they put into the document. They are not allowed to modify or delete
annotations created by other users. Alerts will show up when they try to perform illegal operations on
the WebViewer. A special case is when the author of an annotation is undefined or null. In this case,
every user has permission to edit the annotation.

© 2002-2013 PDFTron Systems, Inc.
15 of 30

Read-only Mode

Read-only mode can be enabled by passing 'true' into the 'readonly' query parameter. In read-only
mode, existing annotations on the document cannot be deleted or modified in any way, regardless of the
permission level of the current user. However, the user is still able to select them and read their popup
messages if they have any. Furthermore, new annotations cannot be added into the document. Read-
only mode ensures that existing markups are not changed and remain the only annotations on the
document.

Note that the annotations toggle button can still be used in read-only mode to toggle all the annotations
on or off.

Toggle Annotations

With the toggle annotations button located on the Annotation Panel, the user can toggle between
showing and hiding all the annotations on the currently displayed document. This is similar to changing
the query parameter 'a' which decides whether annotations are enabled, but the ability is dynamic, and
the user can switch between having annotations on or off quickly while reading the document.

By default, annotations are toggled on. Depending on the current state, the toggle annotations button
will show either 'Show' or 'Hide'. Note that when annotations are toggled off, new annotations cannot
be added to the document unless visibility is enabled again. This is to ensure that no annotations are
displayed when the user has opted to hide all annotations. Also note that while annotations do not
appear on the document or the annotations list when annotations are toggled off, they are not removed
from the document; they are merely visually removed from the viewer.

Filter Annotations

On the Annotation Panel, there is a textbox which allows user input to filter out the annotations
currently displayed on the viewer. Annotations are filtered by user name: only the annotations whose
author name contains the filter string will get displayed on the document and the annotations list on the
Annotation Panel. The filtering is dynamic and is triggered every time there is a change in the value of
the filter textbox.

Similar to toggling off of annotations, filtered annotations remain part of the document and are not
removed completely. To add back all the filtered annotations into the document, the user simply
empties the input filter textbox.

© 2002-2013 PDFTron Systems, Inc.
16 of 30

Forms

The PDFTron WebViewer provides support for interactive forms, sometimes known as AcroForms. An
AcroForm is simply a collection of fields for gathering information interactively from the user. In a
PDF document there may be any number of fields appearing on any combination of pages. The
combined fields make up a single interactive form that can be imported or exported from the document.

During the conversion process from PDF to XOD, the form fields' name-value pairs, as well as all the
information needed to recreate the fields' appearances, are saved into the internal XFDF embedded in
the XOD document. This information that is stored inside the internal XFDF is used by the PDFTron
WebViewer to re-create the field widgets elements on the viewer.

Here are the major features of the PDFTron WebViewer form support:
● rendering of the form field widgets as from the original PDF document
● dynamic data entry into form field widgets
● loading and saving of form field data
● support for common form actions, such as submit form action, JavaScript action

Supported Field Widget Types

The PDFTron WebViewer supports all the form field types outlined in the PDF specification, except the
signature field.

Button Fields

A button field is an interactive control that the user can manipulate with the mouse. They include the
following:

● Push button: a purely interactive control that responds to user inputs without retaining a
permanent field value

● Checkbox: a control that can be toggled between two states: on and off
● Radio buttons: a group of related toggles. Selecting any one from the group automatically

deselects all the others, such that at most one may be on at any given time

© 2002-2013 PDFTron Systems, Inc.
17 of 30

Text Fields

A text field is a box or space in which the user can enter text by using the keyboard.

Choice Fields

A choice field contain one or more text items, where at most one of which may be selected as the field
value. They include the following:

● list box: a scrollable control listing all the items that can be chosen
● combo box: a dropdown menu containing all the items that can be chosen

Supported Form Actions

The PDFTron WebViewer supports a subset of the standard PDF form action types that can be attached
to form widgets. These include the following:

Submit Form Actions

A submit form action transmits the name-value pairs of selected interactive form fields to a specified
URL, presumably the address of a server that will process the submitted data and send back a response.
The form data may be submitted in either HTML Form format, or XFDF format.

Reset Form Actions

A reset form action resets selected interactive form fields to their default values.

© 2002-2013 PDFTron Systems, Inc.
18 of 30

JavaScript Actions

A JavaScript action causes a script to be executed when the widget is clicked. The script can be any
JavaScript that is stored in the action attribute of the widget of the PDF document. When the widget is
clicked, eval() is called to execute the stored JavaScript.

Hide Actions

A hide action either hides or shows a widget element on the screen.

Note that these form actions must be attached to the field widgets before the document is converted
from PDF to XOD. The attributes describing the action are exported into the widget XFDF elements,
and the WebViewer will create appropriate event handlers upon reading these action attributes while
loading the XFDF file.

© 2002-2013 PDFTron Systems, Inc.
19 of 30

Processing Annotations and Forms
Once users create markup annotations and fill in form fields, you will want to manage and process this
data. The sections below we discuss how to save, load and merge annotation data in WebViewer.

Loading Annotations and Form Fields

The WebViewer works by loading XOD files, therefore the user needs to convert the PDF source
document into a XOD document first. During the convert process, an XFDF file is embedded into the
XOD document, which stores all the existing annotations, links, and form data of the PDF document.

When a XOD document is first loaded into the PDFTron WebViewer, it looks into the internal XFDF
embedded into the XOD document itself during the convert process, and uses that XFDF to load all of
the following stored in the XFDF: annotations, links, and form field widgets. Please note that the query
parameter 'a', which specifies whether annotations are enabled or not, must be set to 1 so that both
annotations and widgets are loaded in the viewer.

While the user can provide an external XFDF file to load annotations from in the onDocumentLoaded()
callback function in ReaderControl.js, it is important to note that this external XFDF file would replace
the internal XFDF file as the source of annotations and form data loading. That is, only the annotations
and widgets stored in the external XFDF would get loaded, while the internal XFDF would be ignored.
Therefore, if the original PDF document contains an AcroForm, the external XFDF the user provides
must contain the form field widgets information inside it as well so that the PDFTron WebViewer can
recreate the form field widgets.

Exporting Annotations and Form Fields

The WebViewer allows multiple methods of exporting annotations and form fields in order to
accommodate the different needs of users. Both annotations and form field data are exported into one
single XFDF file. Here are the 3 most common methods to export annotations.

1 Export to XFDF as local download
The user can download the XFDF file containing the annotations and form data of the document
directly from the WebViewer, by the use of dataURLs.

© 2002-2013 PDFTron Systems, Inc.
20 of 30

2 Export whole XFDF to server
The user can export the whole XFDF file (as a string) to the server, where this copy would replace the
central copy stored in the server for the document.

3 Export modified XFDF to server
WebViewer supports the export of only the modified annotations (newly added, modified existing,
deleted existing) to the server as an XML command. The command would contain only the annotations
and form fields that are changed. For added and modified annotations, the command would include the
XFDF representation of the annotation, while for deleted annotations, the command would only include
the ID of the annotation. Note that unlike the first two methods, this method does not export the
information needed to recreate the form field widget appearance. Only the form field data, that is,
name-value pairs, would be exported. If the user is exporting with the command structure, it is
important for the server to implement some kind of XFDF merging logic so that the central XFDF copy
can be updated properly.

This is the command structure used by the WebViewer:

<?xml version="1.0" encoding="UTF-8" ?>
<xfdf xmlns="http://ns.adobe.com/xfdf" xml:space="preserve">
<doc_id>doc_id</doc_id>
<fields />
<add />
<modify />
<delete />
</xfdf>

The doc_id element contains the document ID of the opened document. The fields element contains the
modified form fields. The add, modify, delete elements contain the added, modified, and deleted
annotations respectively.

Merging XFDF Annotations

If annotations and form data are exported to the server using the XML command structure, then the
server must implement some logic to merge the XML command into the central XFDF copy for the
document. Although XFDF merging code can be easily implemented in any programming language,
there are readily-made solutions available.

© 2002-2013 PDFTron Systems, Inc.
21 of 30

PDFNet SDK

The PDFNet SDK has the capability to merge the custom XML command from the WebViewer into an
existing FDF document. To merge the XFDF on the server then, the user can host PDFNet on the
server, and perform the following steps:

● fetch the central XFDF file for the document
● call FDFDoc::CreateFromXFDF() with PDFNet to create an FDF document from the XFDF

document fetched
● call FDFDoc::MergeAnnots() to merge the XML command into the FDF document. This is

where permission checking is done as well. For more information, please see the PDFNet
documentation

● call FDFDoc::SaveAsXFDF() to save the merged FDF document as XFDF. This will be the
new central XFDF copy of the document

Samples/Tutorials

Specifying the server URL for annotation loading/saving through Configuration Options

//In a custom js script whose path is provided in the “config” query string
$.extend(ReaderControl.config, {
 serverURL : "annotationHandler.php",
 //defaultUser is the Author name that is used to create
 defaultUser: 'Guest',
});

Loading form data during onDocumentLoaded()

// Inside ReaderControl.js and the function onDocumentLoaded(), the current default behaviour is
// to load an external XFDF if it exists, or the internal XFDF embedded in the XOD otherwise.
// the 'externalAnnotsExist' parameter is used to decide whether the internal XFDF is loaded.
// Note that server_url and doc_id are read in as the document is initially loaded.

var queryData = {};
if(this.doc_id != null && this.doc_id.length > 0) {
 queryData = {

© 2002-2013 PDFTron Systems, Inc.
22 of 30

 'did': this.doc_id
 };
}

$.ajax({
 url: this.server_url + '?did=' + this.doc_id,
 cache: false,
 data : queryData,
 success: function(data) {
 if(data != null) {
 am.externalAnnotsExist = true;
 am.LoadAnnotations(data);
 }
 },
 error: function(jqXHR, textStatus, errorThrown) {
 console.warn("Annotations could not be loaded from the

server.");
 am.externalAnnotsExist = false;
 },
 dataType: 'xml'
});

Saving annotations as XFDF locally

// Inside AnnotationPanel.js, create an AnnotationManager and call
// AnnotationManager.SaveAnnotations(); make use of dataURLs to download locally

var am = readerControl.docViewer.GetAnnotationManager();

var xfdfString = readerControl.SaveAnnotations();
var uriContent = "data:text/xml," +

encodeURIComponent(xfdfString);
newWindow=window.open(uriContent, 'XFDF Document');

Exporting annotations as whole XFDF to server

// Inside AnnotationPanel.js, create an AJAX request to the server, with the data being the XFDF string
// returned by AnnotationManager.SaveAnnotations(). Note that server_url and doc_id are read in as
// the document is initially loaded

© 2002-2013 PDFTron Systems, Inc.
23 of 30

if(readerControl.server_url == null) {
 console.warn("Not configured for server-side annotation saving.");
 return;
}
var am = readerControl.docViewer.GetAnnotationManager();
var xfdfString = am.SaveAnnotations();
$.ajax({
 type: 'POST',
 url: readerControl.server_url + '?doc_id=' + readerControl.doc_id,
 data: xfdfString,
 success: function(data) {
 //Annotations were successfully uploaded to server
 },
 error: function(jqXHR, textStatus, errorThrown) {
 console.warn("Failed to send annotations to server. " + textStatus);
 },
 dataType: 'xml'
});

Exporting modified annotations as XML command to server

// Inside AnnotationPanel.js, create an AJAX request to the server, with the data being the command
// string returned by AnnotationManager.GetAnnotationCommand(). Note that server_url and doc_id
// are read in as the document is initially loaded

if(readerControl.server_url == null) {
 console.warn("Not configured for server-side annotation saving.");
 return;
}
var am = readerControl.docViewer.GetAnnotationManager();
var xfdfString = am.GetAnnotationCommand();
$.ajax({
 type: 'POST',
 url: readerControl.server_url+'?doc_id='+readerControl.doc_id,
 data: xfdfString,
 success: function(data){
 //Annotations were successfully uploaded to server
 },
 error: function(jqXHR, textStatus, errorThrown){
 console.warn("Failed to send annotations to server. " + textStatus);
 },
 dataType: 'xml'
});

© 2002-2013 PDFTron Systems, Inc.
24 of 30

Sample server code to handle merging of XML command

<?php
include("../Lib/PDFNetPHP.php");

PDFNet::Initialize();

$con = mysql_connect("localhost","root","");
if (!$con) {
 die('Could not connect: ' . mysql_error());
} else {
 //echo "connected!";
}

if (array_key_exists('HTTP_RAW_POST_DATA', $GLOBALS)) {
 $command = $GLOBALS['HTTP_RAW_POST_DATA'];
}

if (isset($_REQUEST['did'])) {
 // check doc_id and fetch the correct xfdf
 mysql_select_db("test", $con);
 $doc_id = $_REQUEST['did'];
 $result = mysql_query("SELECT * FROM xfdf WHERE doc_id={$doc_id}");
 $row = mysql_fetch_array($result);
 $filename = $row['xfdf'];

 // call PDFNet to perform merges
 if (isset($command)) {
 $server_dir = "C:/wamp/www/server/";
 $xfdf_doc = FDFDoc::CreateFromXFDF($server_dir . $filename);
 $xfdf_doc->MergeAnnots($command);
 $xfdf_doc->SaveAsXFDF($server_dir . $filename);
 }

 // return newest copy of annots
 header("Content-type: text/xml");
 echo file_get_contents($filename);
}
mysql_close($con);

?>

© 2002-2013 PDFTron Systems, Inc.
25 of 30

Advanced Features

Document Encryption/Decryption
Document encryption is supported by the XOD converters and the PDFTron WebViewer is able to view
these encrypted documents. Documents are encrypted with 128 bit AES (Advanced Encryption
Standard), a specification from the National Institute of Standards and Technology (NIST), and is used
by governments and businesses worldwide.

This allows you to implement certain forms of DRM which can be useful if you want users to only be
able to view documents inside the viewer and not simply download the files to view any time outside of
it. For example a web magazine viewer would likely not want users to simply download the magazines
and send them to their friends. Note that the files may be able to be downloaded but they would be
unviewable since they would be encrypted. Another option would be that the server doesn’t store the
password, the user just has to enter it in the viewer before they can view the document, effectively
password protecting the document.

Encryption on XOD Conversion

The process for encrypting a XOD document on conversion is simple, you pass in a password to
encrypt the document with. Depending on which XOD conversion component you are using, the way it
works is:
For PDFNet with WebViewer Add-on
You can call the ToXod method with a XodConversionOption. You can specify the password in the
XodConversionOptions by calling SetXodEncryptPassword.

For PDFNet DocPub
You can specify the encryption password as an additional command-line argument “--
xod_encypt_password myPassword”
e.g. docpub test.pdf -f xod --xod_encrypt_password mypassword

For PDFNet Cloud API
You can specify the password when you make your POST requests to create a document by adding it to
the query parameter with the key “xodEncryptPassword”
e.g. POST https://api.pdftron.com/v1/document?xodEncryptPassword=foobar

© 2002-2013 PDFTron Systems, Inc.
26 of 30

Decryption on Client

In the client-side JavaScript you will have to make some modifications to decrypt an encrypted XOD
file. Where the part retriever is created you will need to pass in two additional parameters. The first of
which is the decryption function, window.CoreControls.Encryption.Decrypt and the second is an
options object literal. The options object should have a “type” property which should be “aes”, a
“password” property which should be the password used to encrypt the file and an optional “error”
function. The error function is called if there is an error while attempting to decrypt the document.

// Sample showing how to decrypt a file. The password could be obtained from the user
// or from a call to the server

var decrypt = window.CoreControls.Encryption.Decrypt;
var options = {
 type: "aes",
 password: "pass",
 error: function(msg) {
 alert(msg);
 }
};

var partRetriever = new window.CoreControls.PartRetrievers.HttpPartRetriever(doc,
true, decrypt, options);

© 2002-2013 PDFTron Systems, Inc.
27 of 30

Offline Mode
The WebViewer provides support for downloading documents for offline viewing. Once a document
has been downloaded it will be able to viewed without an Internet connection. The HTML5 and mobile
viewers have sample implementations of this which can be enabled by setting the enableOfflineMode
option in WebViewer.js or by setting the query parameter “offline” to 1 directly in ReaderControl.
Offline mode makes use of IndexedDB or WebSQL depending on the browser.

Getting Started

The functions for offline mode are provided on the Document object. Before any other offline mode
functions can be called you must call InitOfflineDB(onComplete). You can pass in a callback function
that will be called when the database has been initialized.

Downloading a Document

To begin downloading a document call its StoreOffline(onComplete, onProgress) function. The
onComplete callback is called when the document has finished being downloaded or the download has
been cancelled. The onProgress callback is called on each update in progress of the download. The
fraction downloaded so far is passed in as a parameter.

To programmatically cancel an ongoing download you can call the CancelOfflineModeDownload()
function. It will cancel any ongoing HTTP requests for parts of the document. This could be hooked up
to a button as shown in offlineReady() in ReaderControl.js.

Enabling Offline Viewing

To actually enable offline viewing of a document you must call it’s SetOfflineModeEnabled(enabled)
function. Passing in true will enable offline mode i.e. the document will be read from the offline
database. Passing in false will disable it and the document will be read from the server. You can call the
GetOfflineModeEnabled() function to get the current state. You will probably not want to enable offline
viewing until the document has finished downloading or has been downloaded previously. To check
this you can call a document’s IsDownloaded() function.

© 2002-2013 PDFTron Systems, Inc.
28 of 30

Appendix

HTML5 ReaderControl Query Parameters

When the HTML5 viewer, ReaderControl, is used by itself outside of WebViewer.js, query string
parameters can be used to control the viewer. Below is the list of parameters that are available:

a – A boolean parameter that specifies whether annotations are enabled or not. If 'a' is false, annotations
will not be displayed on the document, and no annotations-related operations can be performed. See
also: Toggle Annotations

d – The string that contains the path to the document to be displayed on WebViewer. This is the relative
path to the location which hosts ReaderControl.html.

did – The ID of the document to be displayed on WebViewer. It is a string without any special
restrictions. This ID, assigned by a server, can be used to fetch the correct XFDF annotations file if
there are multiple documents stored on server. On the other hand, 'did' can also be used as a session
token, in order to authenticate the client user.

url – The URL to the server script that would handle AJAX requests sent from the WebViewer client.
For example, these can be requests to fetch the XFDF annotations file for the displayed document.

user – A string that specifies the current user of the WebViewer. This is used to record the author of any
new annotations added to the document, as well as perform user permission checks with regards to
operations on existing annotations on the document.

admin – A boolean parameter that specifies whether the current user is an administrator. An admin user
can perform add/modify/delete operations on annotations without restrictions. See also: Permission
Checking

readonly – A boolean parameter that specifies whether readonly mode is enabled or not. Annotations
cannot be modified in any way in readonly mode. See also: Readonly Mode

offline – A boolean parameter that specifies whether offline mode is enabled on or not. In offline mode
the user can download the document for offline viewing.

config– The URL to a JavaScript file that contains configuration options and customizations to the
ReaderControl. The config file can be from a different host than the ReaderControl.

© 2002-2013 PDFTron Systems, Inc.
29 of 30

streaming– A boolean parameter that specifies whether or not to use document streaming. Please note
that streaming refers to serving the XOD document AS it is converting. Using streaming mode
degrades performance and should only be used if XOD conversions are done on-the-fly or if the XOD
file host does not support byte range requests.

© 2002-2013 PDFTron Systems, Inc.
30 of 30

	Introduction
	Audience and Scope
	WebViewer Components
	Client-side Viewer Application
	Platforms Supported

	Document Conversion Component
	PDFNet Cloud API
	PDFNet SDK with WebViewer Add-on
	DocPub Command-line Converter

	Your Server Component
	WebViewer and XOD Hosting
	Annotation Handling

	WebViewer:The Basics
	Using JavaScript with WebViewer
	XOD Conversion

	Customization Framework
	Configuration Options
	External Configuration File
	Customization with PDFNet Cloud API

	Annotations and Forms
	Markup Annotations
	Permission Checking
	Read-only Mode
	Toggle Annotations
	Filter Annotations

	Forms
	Supported Field Widget Types
	Button Fields
	Text Fields
	Choice Fields

	Supported Form Actions
	Submit Form Actions
	Reset Form Actions
	JavaScript Actions
	Hide Actions

	Processing Annotations and Forms
	Loading Annotations and Form Fields
	Exporting Annotations and Form Fields
	Merging XFDF Annotations
	PDFNet SDK

	Samples/Tutorials

	Advanced Features
	Document Encryption/Decryption
	Encryption on XOD Conversion
	Decryption on Client

	Offline Mode
	Getting Started
	Downloading a Document
	Enabling Offline Viewing

	Appendix
	HTML5 ReaderControl Query Parameters

